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Measurements were made of the wave height of periodic, quasi-periodic, and chaotic 
parametrically forced cross-waves in a long rectangular channel. I n  general, three 
frequencies (and their harmonics) may be observed : the subharmonic frequency and 
two slow temporal modulations - a one-mode instability associated with streamwise 
variation and a sloshing motion associated with spanwise variation. Their 
interaction, as forcing frequency, f, and forcing amplitude, a, were varied, produced 
a pattern of Arnold tongues in which two or three frequencies were locked. The 
overall picture of frequency-locked and -unlocked regions is explained in terms of the 
Arnold tongues predicted by the circle-map theory describing weakly coupled 
oscillators. Some of the observed tongues are apparently folded by a subcritical 
bifurcation, with the tips of the tongues lying on the unstable manifold folded under 
the observed stable manifold. Near the intersection of the neutral stability curves for 
two adjacent modes, a standing wave localized on one side of the tank was observed 
in agreement with the coupled-mode analysis of Ayanle, Bernoff & Lichter (1990). At 
large cross-wave amplitudes, the spanwise wave structure apparently breaks up, 
because of modulational instability, into coherent soliton-like structures that 
propagate in the spanwise direction and are reflected by the sidewalls. 

1. Introduction 
1.1 .  Related theory and experiments 

There have been several recent investigations of the periodic, quasi-periodic, and 
chaotic behaviour of waves forced by oscillating a container or the wall of a 
container. Ciliberto & Gollub (1984, 1985) found that two parametrically excited 
modes (in a circular geometry) with adjacent regions of instability can exchange 
energy in a periodic or chaotic fashion. Lichter & Underhill (1987) showed that, for 
cross-waves near the transition frequency from one mode to an adjacent mode, there 
is a small frequency interval of chaos. Shemer & Lichter (1987) found a quasi- 
periodic and chaotic region a t  large forcing amplitude for cross-waves in a long 
channel. Funakoshi & Inoue (1987, 1988) identified a strange attractor for resonantly 
forced surface waves in a cylindrical vessel oscillated horizontally. Gu & Sethna 
(1987) developed a perturbation analysis for paramctrically excited waves in a 
rectangular tank and identified a t  least three routes to chaos. They also computed 
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the basins of attraction (Gu, Sethna & Narain 1988) for regions of parameter space 
in which there are multiple solutions. The dependence of amplitude on detuning a t  
a supercritical bifurcation showed good agreement with experiment (Virnig, Berman 
& Sethna 1988). Ayanle, Bernoff & Lichter (1990) applied the perturbation approach 
of Jones (1984) to derive the coupled nonlinear Schrodinger equations that describe 
the interaction of cross-wave modes near a codimension two point. The equations 
were projected onto a centre manifold and solved to find multimode steady-state and 
periodic solutions. 

A single cross-wave mode is a standing wave with its crests parallel to the sides of 
the tank. The cross-wave mode number, N ,  can be easily identified by counting the 
number of half-wavelengths spanning the tank. A single mode can be unstable to 
slow streamwise modulations, and several modes can interact to  produce spanwise 
modulations. In  this paper, we report on the observations of cross-waves in a long 
channel parametrically forced by a wavemaker at one end. As a function of two 
parameters, forcing frequency and forcing amplitude, regions are found in which the 
modulations may produce a periodic, quasi-periodic, or chaotic temporal variation of 
wave height ($53.1 and 3.2). The different types of motion are mapped out in 
parameter space and identified by their winding numbers (cf. $9 1.2 and 2.2). At large 
forcing amplitudes, the spanwise modulation becomes localized into soliton-like 
pulses traversing the width of the tank. The sloshing soliton is not locked to the 
forcing frequency, resulting in a noisy periodic modulation ($3.3). Observations near 
the point of intersection of two adjacent neutral stability curves ($3.4) reveal a 
steady mixed-mode state previously described by Ayanle et al. (1990) using a set of 
coupled nonlinear Schrodinger equations. 

The temporal features of the wave states are quantified by power spectra, 
Lyapunov exponent, correlation dimension, and winding number. Spatial structures 
are identified by multiprobe measurements and image processing. 

Miles (1984) has shown that the motion of inviscid cross-waves is formally 
equivalent to a parametrically forced pendulum. The work presented here shows that 
more complicated states can be considered as weakly coupled oscillators and may be 
partially described ($4) using the theory of circle maps (MacKay & Tresser 1986). 

The remainder of this paper is organized as follows. The theory of weakly coupled 
oscillators is presented in $ 1.2. The wave tank, experimental procedures, and 
methods of data processing are described in $2. The results are presented in $3. The 
experimental results are discussed and compared to  the theory of three weakly 
coupled oscillators in $4. Also in $4, the observed steady mixed-mode state is 
compared to the multimode theory of Ayanle et al. (1990). The main conclusions are 
summarized in $5.  

1.2. Theory of weakly coupled oscillators 

The structure of the observed transitions is found to be similar to the behaviour of 
a system of weakly coupled oscillators. Below, the theory of weakly coupled 
oscillators and its relationship to circle maps are discussed. These ideas are compared 
with experiment in $4. 

A natural setting for the description of a dissipative oscillator is a phase space in 
which one of the coordinates is the phase of the oscillator. When considering two 
oscillators, their phases yield coordinates on a torus. One can define a Poincard 
section of this torus by sampling the motion a t  a fixed phase of one of the oscillators ; 
the dynamics induce a circle map on the Poincar6 section. Under appropriate 
conditions (Aronson et al. 1982) this mapping will be invertible and autonomous, and 
will reproduce the dynamics of the full system. The winding number, w ,  can then be 
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FIGURE 1.  Arnold tongues for the circle map as a function of nonlinearity K and frequency Q (after 
Ecke et al. 1989). The shaded regions are frequency-locked tongues, which are marked with their 
winding numbers. The Farey sum of two winding numbers generates the winding number for an 
intermediate tongue. By repeatedly generating these sums, frequency-locked tongues between any 
two given tongues can be found. Only the largest tongues have been shown. 

defined as the ratio of the number of times a trajectory wraps around the torus t o  the 
number of times it strikes the Poincar6 section. It corresponds to  the ratio of the 
frequencies of the oscillators. When the coupling of the oscillators is not weak, the 
circle map defined above may no longer faithfully model the behaviour of the full 
system (MacKay & Tresser 1986). The winding number in this situation may not 
converge to a unique limit. 

A well-studied example (MacKay & Tresser 1986) is the sine (or standard) circle 
map, 

K 
2n 

= On+SZ+-ssin(2n0,) mod(l) ,  

where the iterates may be located on a circle of radius 1 by letting 2x0 equal the 
circumferential angle. If K = 0, then the two oscillators are uncoupled, and the 
winding number is SZ (figure 1). When the nonlinearity K > 0, the two frequencies can 
lock to a fixed ratio over an interval of B corresponding to a rational winding 
number. The regions in (a, K )  parameter space in which locking occurs are called 
Arnold tongues, or simply tongues. The tongues are widest (i.e. they persist for a 
wide interval of a), and hence easiest to observe experimentally, when the ratio of 
the locked frequencies is equal to the ratio of two small integers. Between two 
tongues with winding numbers p l /q l  and p, /q , ,  a rational number with a larger 
denominator can be constructed by taking their Farey sum (pl  + p , ) / ( q l  + q 2 )  ; the 
resulting offspring is called the Farey daughter (Ecke, Farmer & Umberger 1989). By 
starting with the two fractions 0/1 and 111 and iterating this process, all rational 
numbers on the interval (0 , l )  can be constructed ; this genealogical construction is 
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known as a Farey tree. For the circle map, this construction identifies Arnold tongues 
on progressively finer scales. 

If the value of SZ is increasing a t  fixed positive K ,  the graph of the winding number 
will be a continuous non-decreasing function with finite intervals fixed at each 
rational number corresponding to the frequency-locked tongues. A point for each 
irrational winding number can also be found between the rational steps. This graph 
is known as a devil's staircase (Bak, Bohr & Jensen 1985). Owing to the finite 
accuracy of the measurements only a finite number of these intervals will be observed 
in any experiment. 

Unfortunately, when three oscillators are considered, the dynamical picture 
exhibits much richer structure and is only poorly understood (Linsay & Cumming 
1989; Cumming & Linsay 1988; Arneodo, Coullet & Spiegel 1983). The work of 
Newhouse, Ruelle & Takens (1978) suggests that chaotic behaviour will be observed 
with arbitrarily weak coupling. However, much of the ordered structure will persist, 
also. All three frequencies can lock in rational ratios over finite intervals of parameter 
space. Or, two of the frequencies may lock strongly in a particular region, and the 
interaction of this common frequency and the third frequency may act as two 
coupled oscillators. Experimentally, we will concentrate on observing these ordered 
states by measuring two winding numbers as described below. 

2. Experimental apparatus and data processing 
2. I .  Apparatus 

Experiments were performed in a rectangular tank 121 cm long, 30.9 cm wide, and 
30 cm deep; the water depth was 25.8 cm (see figure 2). Complete details of the 
apparatus and experiment procedures can be found in Underhill (1990). A wave 
absorber was mounted a t  the far end of the tank to minimize reflections. Finite 
length effects are discussed in detail in Kit & Shemer ( 1989) and Underhill (1990). To 
verify that the observed resonances were not unduly influenced by the finite length 
of the tank, experiments were run for various tank lengths by means of a false wall. 
The frequency peaks were not seen to shift for reductions of tank length less than 
10 cm. A plane wavemaker, hinged on a pedestal 11.7 cm from the bottom, was 
located 29 cm from one end of the tank. There was a gap of 0.075 em between the 
wavemaker and the sidewalls. The wave field in the test section was influenced, via 
communication through this gap, by the waves and chop behind the wavemaker. 
These waves had a noticeable effect on the growth rate of the cross-waves. Therefore, 
the area behind the wavemaker was covered with a piece of soft sponge rubber, which 
prevented the growth of any waves behind the wavemaker. Decreasing the gap width 
had no measurable effect on the location of the neutral stability curves and other 
bifurcation curves. 

The wavemaker was driven by a linear d.c. motor controlled by a Galil DMC-230 
motion control system. A computer-generated sine wave of variable frequency and 
amplitude was converted to  an analog signal and used as a reference signal to the 
controller. The reference was compared a t  lo3 Hz with the actual wavemaker 
position as monitored by an optical encoder that had a resolution of 2.0 x mm, 
and the closed-loop positioning feedback was updated to the motor. Frequency 
stability was within lO-*Hz. The frequency was adjustable in increments of 
2 x Hz and, by accessing the clock chip directly, could be changed while the 
waveform remained continuous. When modulations were present in the wave field, 
the wavemaker was subject to  a varying hydrodynamic load. The motion control 
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FIGURE 2. Schematic of the experiment. Details of the apparatus are given in 32.1. 

system effectively excluded coupling of these loads to  the motion of the wavemaker. 
Under the most extreme modulation conditions, the wavemaker amplitude 
fluctuated by less than 2%. Though the feedback to the wavemaker affected the 
extent of instability regions, the effect was slight (see $4). 

Wave height was measured by a capacitance-type probe whose active element was 
a single length of insulated wire 0.2 mm in diameter. The capacitance of the wire 
varied linearly with the wave height. The probe was modified from a circuit supplied 
by Joe Hammack of the University of Florida. Static calibration of the probes 
showed a signal to noise ratio of 3801 1. Phase and amplitude distortion were less than 
3% for frequencies up to 20 H z .  While the probes were often as close as 1 cm to the 
wavemaker, they could be moved to  a location up to 3 cm from the wavemaker if 
considerable wave breaking occurred. 

Prior to  conducting any experiments, the wave tank was filled with tap water and 
allowed to  reach room temperature. Also, the surfactant Kodak Photo-Flo 200 (Wu, 
Keolian & Rudnick 1984) was added to  attain a 0.6% concentration by volume. 
Experimental results were repeatable if the water was changed every 7 days and 
allowed to  sit for at least a day after refilling. The surface tension at this 
concentration was the minimum attainable and equal to 33.8 dynes/cm as measured 
by the de Nouy ring technique (Chen 1987). 

2.2.  Data analysis 
Takens (1981) showed that a single measurement of a d-dimensional flow can 
generally be used to  reconstruct trajectories by looking a t  a (2d + 1)-dimensional 
phase space constructed with time delays. In  this case, the wave height, A(t ) ,  a t  time 
t was used to  generate a coordinate vector 

E ( t )  = { A ( t ) , A ( t + 7 ) .  . .A ( t+ (2d+  1)7)}, 
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where T is the time delay which is chosen to  obtain a clear picture of the phase 
portrait. In practice, T varied between a sixth and a third of the one-mode oscillation 
period. For the dimension measurements described below, the reconstructed phase 
space was, a t  most, six dimensional. Poincard sections of the three-dimensional phase 
space were obtained by sampling a t  the subharmonic frequency. 

The algorithm of Wolf et al. (1984) was used to  compute the largest Lyapunov 
exponent. The Lyapunov exponents were measured in bits per unit time, the rate a t  
which the error doubles. The method of Grassberger & Procaccia (1983) was used to  
measure correlation dimension. All algorithms were tested for several simple systems 
of known dimension and Lyapunov exponents, including the HBnon and Rossler 
attractors. The correlation dimension was measured for the Poincard section, so the 
dimension in the full phase space is the measured value plus one. 

Power spectra were performed using a standard fast Fourier transform algorithm, 
typically on 1024 points, sampled at  the subharmonic frequency. The bandwidth 
was typically about 2 Hz, with a resolution of 4 x lop3 Hz. 

When three intrinsic frequencies are locked in a periodic state, one can define two 
winding numbers. In this paper, winding number is used as a diagnostic to 
investigate locked states. If the motion is chaotic, the winding number may no 
longer be well defined. The winding number w(F,/F,) relating the one-mode 
frequency Fl and the sloshing frequency F, was determined by taking the ratio of the 
frequencies a t  the two spectral peaks. A more precise method for determining the 
winding number w(F,/F,) (F, is the subharmonic frequency) was suggested by Charles 
Tresser (cf. Guckenheimer &, Holmes 1983). It is avsumcd that the flow lies on or near 
some torus and that for each time a trajectory winds around the torus, its 
coordinates on the Poincard section will have a unique maximum. If the number of 
times the trajectory strikes the Poincare' section between successive maxima is called 
pi, then the number of times the trajectory strikes the Poincare' section per winding 
is approximated by 

( n = 1 , 2 , 3  ,... ), 

with an error of order l /n.  Define 

and 

Qmin = lim inf {wJ,  

Q,,, = lim sup {w,}.  

N + w  n > N  

N - w  n > N  

If Qmin = Q,,, = Q, the winding number, Q, is well defined. If Q is rational, the 
trajectory is approaching a limit cycle ; if 52 is irrational, the motion is quasi-periodic. 
If Qmax > amin, the winding number is not uniquely defined and the motion is 
chaotic. In practice, only finite data sets were accumulated so, of course, N was finite. 
At small forcing amplitudes, convergence was generally observed within 50 
modulation cycles. Large forcing amplitudes had slower convergence rates, and as 
many as 200 modulation cycles had to be recorded. 

Since the locking to the driver occurred with a winding number greater than 5 and 
the one-mode/sloshing occurred with a ratio less than or equal to 1, there should be 
no confusion ; however, the distinction will be made precise by explicit use of w(FJF,) 

Two methods of determining the transverse spatial structure of the cross-wavc 
envelope were used. In  the first, a videotape of the cross-wave was taken with the 

or w(F,IF,)* 
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FIGURE 3. The parameter space near the resonant frequency for mode N = 5. Subharmonic tongues 
are bordered with a heavy line and labelled with the winding numbers w(Elo/Iiz) = 4f,9 and +f. Quasi- 
periodic tongues are labelled with the ratio w(Fl/Fz) of the one-mode frequency to the sloshing 
frequency. The neutral stability curve is labelled NS+ ; owing to a hysteretic subcritical 
bifurcation, cross-waves can persist to the lower transition NS- . The transition from a steady 
cross-wave to a one-mode modulation occurs across the dotted line. The transition to sloshing is 
hysteretic; it  first occurs for increasing forcing amplitude on crossing the dot-dashed line and 
persists for decreasing forcing amplitudes to the dashed line. Chaotic regions are stippled. The ratio 
w(Fl/F2) measured along the line A is shown in figure 5. The winding number w(Fo/F2) along the 
lines A and B is shown in figure 0. Within the tip of the w(F,/F,) = tongue, the one-mode 
oscillation is barely present ; its amplitude begins to increase rapidly on crossing the diagonal line 
within the tongue (cf. figure 11). 

camera's line-of-sight nearly horizontal and the lighting arranged to minimize direct 
reflections to the camera and to make the wave field as dark as possible relative to 
the white wavemaker. The image was stored on $-inch video tape at 30 frames/s and 
then digitized and transferred to floppy disk. An edge-finding program, developed by 
Robin Strickland of The University of Arizona, Department of Electrical and 
Computer Engineering, determined the surface profile at the wavemaker at 512 
points and performed a Fourier decomposition. While this method worked well, i t  
was more expedient to use the multiprobe method of Simonelli & Gollub (1988). For 
an n-probe array, the Fourier amplitude of n modes can be determined by assuming 
the signal is a linear superposition of these modes and inverting the corresponding n- 
dimensional linear system. In practice, image processing was first performed to 
determine the number, n, of active modes in a particular state. The n-probe 
technique was then used to explore the time history of the state in detail. 
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FIQURE 4. Photographs of the two types of slow modulation, for mode N = 5. The view is towards 
the wavemaker from the end of the channel. The one-mode modulation is shown over half a 
modulation period T, = 1/F, at the approximate times (a) t = 0, ( h )  t = aT, and (c) t = t q. The 
dimensional modulation period is about 15 s. Note that  the peak amplitude is constant across 
the width of the tank. In ( c ) ,  the peak amplitude has progressed away from the wavemaker. 
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The sloshing modulation is shown at the approximate times (d )  t = 0, ( e )  t = aT, and (f) t = fT,, 
where the modulation period T, = l/F,. The dimensional modulation period is about 1.5 s. At the 
beginning of the modulation period (d ) ,  the wave amplitude has a peak on the right wall. The 
modulation propagates to  the centre of the tank ( e ) ,  and is then reflected from the left wall (f). 

13 FLM 225 
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3. Results 
Experiments were performed over a range of forcing frequencies 7.0 cfc 9.0 Hz, 

wbich covered the proximity of the resonant frequencies for modes N = 5, 6 and 7 
( f N  = 7.12, 7.82 and 8.46 Hz, respectively). The results for each mode number are 
presented in non-dimepsional units based on the cross-wave wavfymber, I,, and 
resonant frequency, fN. The non-dimensional frequency, f = f / f N ,  equals 1 at 
resonance (Jones 19!4), andAthe lengthscales and timescales are non-dimensionalized 
by multiplying by k, and f,, respectively. Forcing amplitudes, a, were as large as 
three times the minimum forcing amplitude necessary to maintain cross-waves. 
Lichter & Bernoff (1988) found that in the inviscid limit all bifurcations of a single 
mode appear as straight lines on the stability diagram when the coordinates ( f , u 2 )  
are used. These coordinates are therefore adopted here. 

Two distinct types of slow periodic modulations of the cross-wave field were 
observed. The interactions of these two types of modulation with each other and with 
the forcing frequency created the structure of parameter space that will be described 
in this section. 

Figure 3 shows the parameter space near the cutoff for mode N = 5. On increasing 
the forcing amplitude at fixed frequency, cross-waves first appeared on traversing 
the neutral stability curve (NS + ). This curve has been the object of many studies 
since Barnard & Pritchard (1972), most recently by Shemer & Lichter (1990). Once 
formed, cross-waves persisted on decreasing the forcing amplitude to the lower 
hysteretic transition (NS-) as described in Lichter & Bernoff (1988). The steady 
cross-wave lost its stability on crossing the line denoted by dots to a modulated 
standing wave whose amplitude envelope across the width of the tank was uniform, 
but grew and decayed with a low frequency F,, which may be as much as two orders 
of magnitude less than the forcing frequency f. This state is well known from the 
experiment of Barnard & Pritchard (1972) : ‘After the cross-wave amplitude has 
passed through a maximum, a wave detaches itself from the wavemaker, propagates 
along the channel and is eventually absorbed at the beach ’ (as shown in figures 4u-c). 
The observation is described by the theory for a single spatial mode (Lichter & Chen 
1987). Hence, we call this the one-mode oscillation. 

The second type of modulation appeared on crossing the dot-dashed line in figure 
3 as the forcing amplitude was further increased. This modulation was characterized 
by a transversely propagating wave (or waves) sloshing from side to side in the tank, 
causing the peak wave height to vary across the width of the tank. The transition to 
sloshing was hysteretic ; once excited, the sloshing waves persisted down to the lower 
forcing amplitude marked by a dashed line. The sloshing frequency F, was greater 
than or equal to the one-mode modulation frequency F,, and after transition (-.-), 
the amplitude of the sloshing field continued to be modulated a t  the lower one-mode 
frequency. Figures 4(d-f) show the typical appearance of the sloshing modulation. 
The sloshing modulation is discussed further in $3.3. Figure 5 shows the ratio of the 
one-mode frequency to the sloshing frequency w(Fl/F2) along path A in figure 3. The 
winding number w(Fo/F2) along paths A and B is shown in figure 6 .  The frequency- 
locked intervals along curve B were shifted with respect to those along A due to the 
orientation of the tongues. The frequency-locked regions of the parameter space 
shown in figure 3 were mapped out from figures such as 5 and 6. 

The band in which the one-mode modulation appeared alone (without the sloshing 
mode) was interrupted by the narrow tips of frequency-locked tongues, which extend 
into the one-mode region from the sloshing region (figure 3). The one-mode 



Modulated, frequency-locked, and chaotic cross-waves 38 1 

0.99 1 .oo 1.01 
f 

FIQURE 5. The ratio w(F,/F,) of the one-mode modulation frequency Fl t o  the sloshing frequency 
F, along path A for forcing frequencies f near the resonant frequency for mode 5 (cf. figure 3). The 
gap in the data at w(Fl/F,) = f is due to the tip of the w(F,/F,) = 9 subharmonic tongue for which 
the one-mode modulation is absent (cf. figure 11). 

FIQURE 6. The winding number w(Fo/F2) aa a function of forcing frequency f along paths A and 
B for forcing frequencies f near the resonant frequency for mode N = 5 (cf. figure 3). 

modulation may be absent in the tips of these tongues (cf. $3.1). Within the tongues, 
the sloshing modulation was locked to the subharmonic frequency. These will be 
called subharmonic tongues. The three observed subharmonic tongues shown in 
figure 3 have winding numbers w(Fo/F2) = v, 4 and $. 

Outside these subharmonic tongues were other tongues in which the sloshing was 
locked to the one-mode modulation but unlocked to the subharmonic frequency. 
Hysteresis was not observed in the neighbourhood of the boundaries of these 
tongues. However, perturbing the parameter across a boundary led to long transients 
before the transition was observed. These tongues are labelled with the ratio w(Fl/F2) 

13-2 
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FIGURE 7. Parameter space near the resonant frequency for mode N = 7 .  The notation is as in figure 
3. In addition, the cross-hatching denotes chaotic extensions of the quasi-periodic tongues. Though 
the wave height is chaotic within these regions, w(F,/F,) remains equal to the value shown in the 
quasi-periodic part of the tongue. The points (a-f) along the line a t  f = 1.004 were investigated 
using power spectra (figure 8), Poincare' sections (figure 9), and largest Lyapunov exponent and 
correlation dimension (figure 10). 

for the one-mode/sloshing frequencies and will be called quasi-periodic tongues 
because they were not locked to the subharmonic frequency. The quasi-periodic 
tongues observed had winding numbers &, $, a, g, and a. Regions in which the wave 
height was apparently chaotic were between the tongues. 

Where the quasi-periodic tongues overlapped the subharmonic tongues, states 
were observed where all three frequencies were locked. Areas of chaos were seen 
between these triply locked regions. 

Near the resonant frequency for other mode numbers, the regions of chaos and 
mode locking were similar (figure 7 ) .  However, there were differences dependent on 
mode number. It appeared as if the one-mode band became thinner as the mode 
number increased, For N > 6, the one-mode modulation was never stable and the 
uniformity of the cross-wave envelope would, within a minute of the onset of 
modulation, be augmented by a sloshing mode. Hence, there was no band for N = 
7 in figure 7 that corresponded to that in figure 3 for N = 5 ,  in which the one-mode 
oscillation existed without the simultaneous presence of the sloshing mode. 

The parameter space near the cutoff for mode 7 will now be discussed in greater 
detail, as i t  was the region where the most extensive measurements were taken. 
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FIQURE 8. Power spectra for the points shown in figure 7 along the line at f = 1.004 within the 
subharmonic tongue. The corresponding Poincar6 sections are shown in figure 9. The spectral peak 
at the subharmonic frequency has been removed by sampling each subharmonic period. (a )  
The steady cross-wave. ( b )  In the tip of the tongue. The one-mode oscillation, F,, is relatively small. 
The sloshing, F,, is locked to the subharmonic frequency in a ratio w(Fo/F,) = 13, creating 13 
periodic points. (c) On crossing the diagonal line interior to the tongue, the one-mode oscillation 
appears. ( d )  The one mode oscillation is incommensurate with the subharmonic, forming 13 loops 
in the Poincar6 section, one each around the former locations of the 13 periodic points. ( e )  I n  the 
chaotic band. (f) The w(F,/F,) = frequency-locked region. 

3.1.  Subharmonic tongues 

If the steady cross-wave was unmodulated (figure Sa), then its Poincar6 section was 
simply a fixed point in phase space (figure 9a). The w(F,/F,) = 13 subharmonic 
tongue was explored by commencing with the steady state and then observing a 
sequence of states along the line at  f = 1.004 (figure 7) .  Near the tip of the tongue, 
the Poincar6 section visited each of 13 fixed points for each modulation period (figure 
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for figure 8. A @ )  is the wave height. 
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FIGURE 10. Largest Lyapunov exponent (a) and correlation dimension (b)  aa a function of forcing 
amplitude at constant f = 1.004. The labelled points (a-f) refer to the points shown in figures 7 ,  
8 and 9. 

9 b ) .  The largest Lyapunov exponents (figure 10a) for both the steady state and 
modulated state were very small, ~ 2 . 4  x bits/time (here, bits/time measures 
the rate at  which error doubles, cf. $2.1). The correlation dimensions (figure l ob )  were 
near unity. The one-mode modulation was discernible in the tip of this tongue, but 
was barely above the noise level; there was only a small one-mode peak in the 
spectrum (figure 8 b ) .  On crossing the diagonal solid line shown within the tongue, the 
one-mode modulation quickly grew (figures 8 c  and 9c) at the frequency cor- 
responding to one-half of the sloshing modulation (figure 11). Though the one-rnode 
oscillation was present with minimal amplitude below this line, it increased rapidly 
at larger amplitudes, as discussed at  the end of this section. The region occupied by 
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FIQUHE 11. Amplitude A ,  of the one-mode amplitude versus forcing amplitude squared, a', at 
forcing frequency f = 1.004 within the zu(F,/F,) = 13 subharmonic tongue. The amplitude A ,  was 
determined from power spectra by taking the square root of the amplitude of the spectral peak at 
frequency F,. 

the one-mode plus sloshing modulation is marked by w(FJF,) = i. There was no 
evidence of a cascade of period doublings following this state; instead, on further 
increase of the forcing amplitude, the periodic fixed points lost their stability as the 
one-mode frequency became incommensurate with the sloshing frequency. When the 
frequency is incommensurate, the phase portrait is expected to be a torus. The 
iterates of the Poincark section (figure 9 d )  hopped from loop to loop, each loop 
corresponding to a cross-section of the torus. Each loop was circumnavigated with 
a frequency 2F,-F2, which appeared as the lowest frcquency peak in figure 8 ( d ) .  The 
evolution to the chaotic state (figures 8e and 9 e )  was accompanied by abrupt 
increases of the Lyapunov exponent to 5.1 x lop2 bits/time and the correlation 
dimension to 2.45 (figure 10). The chaotic states constituted a narrow band and, a t  
larger forcing amplitudes, a non-chaotic region appeared in which w(F,/F,) = $. 
Associated with this region was a decrease of the Lyapunov exponent to near zero 
and a decrease of the dimension to below two. On further increasing the forcing 
amplitude, the modulations again became aperiodic, chaotic motion reappeared, and 
the Lyapunov exponent and correlation dimension increased abruptly. This band of 
chaos lies below a region for which w(F,/F,) = $ (figures 8 f and 9 f ). At even higher 
forcing amplitudes, a chaotic region reoccurred. These large forcing amplitudes will 
be discussed in $3.3. 

Near the tip of the tongue, sloshing occurred without being accompanied by the 
one-mode oscillation. Three probes were used to measure- the amplitude of the odd 
and even components of the cross-wave (figure 12). A probe a t  the centre of the tank 
gave the amplitude of the even mode, while the odd mode amplitude was the 
difference of the measurements from two probes symmetrically phased a t  the nodes 
closest to the centreline of N = 6 ;  this placement maximizes the ratio of the odd to 
even mode amplitudes. Note that the amplitude of the even modes changed sign. The 
portrait was nearly symmetric with respect to a change of sign of the even modes. A 
slight asymmetry was due to the odd number of subharmonic periods in the sloshing 
period. Ax we continued through the tongue, the amplitude of the one-mode 
oscillation rapidly increased. This corresponded to the destruction of the symmetric 
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FIGURE 12. Phase plane portrait of the even and odd components of the wave height of the sloshing 
wave within the tip of the w(F,/F,) = 13 tongue (figure 7 ) .  The asymmetry is due to the odd number 
of subharmonic cycles for one complete sloshing modulation period. 

character of the phase portrait. In the discussion, this will be related to an imperfect 
symmetry-breaking bifurcation. 

3.2. Quasi-periodic tongues 
Outside and overlapping the subharmonic tongues were quasi-periodic tongues in 
which the sloshing frequency was locked to the one-mode frequency but unlocked to 
the subharmonic (figures 3 and 7).  Between these tongues were chaotic regions that 
widened to fill the parameter space at large forcing amplitudes and negative 
detunings. The cross-hatched regions in figure 7 are chaotic regions characterized by 
the presence of a second transverse wave (53.3). However, the cross-hatched regions 
can be considered as extensions of the quasi-periodic tongues. Although there was an 
increase in the noise level moving up through the cross-hatched region, the spectral 
peaks for the one-mode and sloshing frequencies were still narrow and w(FJF2) was 
equal to the value observed within the non-chaotic lower portion of the tongue. 
Continuing to higher forcing amplitudes, one of the intermediate spectral peaks may 
gain ascendancy ; for example, within the cross-hatched region originating in the 
quasi-periodic w(Fl/F2) = tongue, we sometimes found w(Fl/F2) = g. And, finally, 
when the extension of the tongue neared the subharmonic tongue, we found only 
w(Fl/F,) = $. The overlap of the quasi-periodic tongues with the subharmonic 
tongues will be discussed further in 54. 

3.3. Sloshing and noisy periodic modulations 
As the cross-wave amplitude was increased, the sloshing modulation dominated the 
dynamics of the motion. Several distinct sloshing states can be identified. 
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the sloshing may consist of one or 
two transverse waves. For frequencies f 2 1.00, the sloshing appeared as a single 
wave traversing the tank from side to side. For frequencies f 5 1.00, a second 
transverse wave appeared. Near f z 1.00, the two waves were difficult to distinguish. 
As the frequency was further decreased, the waves became easier to identify and were 
observed to pass through each other on alternate sides of the tank. The power spectra 
of the chaotic regions, including the areas shown cross-hatched (figure 7) ,  were 
characterized by high noise levels. On traversing the neutral stability curve NS+ , 
the two waves obtained their greatest separation and crossed repeatedly near the 
channel centreline. Between the curves NS + and NS - (figure 7) ,  the power spectra 
of the chaotic regions possessed a clearly defined peak a t  the sloshing frequency, 
though with a broad one-mode peak. In  the chaotic regions, the one-mode frequency 
increased as a function of forcing frequency, as occurred within the sequence of yuasi- 
periodic tongues. 

two states were found for which the 
spectral peak at the sloshing frequency was accompanied by a high level of 
background noise (figure 13). We call these states ‘noisy periodic’. For one of the 
states, two waves were again observed traversing the tank in opposite directions, 
repeatedly crossing a t  the centreline of the tank. A time series and power spectrum 
are shown in figures 13(a, c). The second noisy periodic state appeared to consist of 
three travelling waves separated by Q of the tank width. A time series and power 
spectrum are shown in figures 13(b, d ) .  

For small forcing amplitudes (a2 < 2.0 x 

At larger forcing amplitudes (a2 > 2.0 x 

3.4. Near the codimension-two point 

The region in parameter space near the intersection of the neutral stability curves for 
modes N = 6 and 7 is shown in figure 14. The up-triangles mark the neutral stability 
curve for N = 6 ; this is a supercritical bifurcation to a steady cross-wave. The down- 
triangles mark the neutral stability curve for N = 7 ; this transition is subcritical and 
hysteretic. Upon crossing this boundary, an abrupt transition to a chaotic cross- 
wave was seen. The crosses mark the non-hysteretic transition from a steady mode 
N = 6 to a steady mixed-mode state of mode N = 6 plus mode N = 7. Figure 15 (u-d) 
shows the modal amplitudes of modes N = 6 and 7 as determined from multiprobe 
measurements (cf. $2.3). Point a in figure 14 is a fixed point for mode N = 6, and the 
amplitude for mode N = 7 is nearly zero (figure 15a). Point b is a fixed mixed mode 
in which both nodes N = 6 and N = 7 were present in proportions that were 
independent of time (figure 15b). This mixed mode appeared as a ‘frozen’ sloshing 
wave in which the modes were in phase on one side of the tank, producing a large 
cross-wave amplitude, and out of phase on the other side, yielding a small cross-wave 
amplitude. The contribution of mode N = 7 was always less than that of mode 
N = 6, but it increased with increasing frequency (point c, figure 15c). As the 
amplitude of mode N = 7 became equal to that of mode N = 6, the wave field became 
unstable and there was a transition to a chaotic wave field (point d ,  figure 15d). 
Transition to a chaotic wave field occurred at the points marked by the open circles 
in figure 14. The boundary is approximately the extension of the neutral stability 
curve from mode N = 6. The transition was irreversible since the steady mixed mode 
could not be regained from the chaotic state. 
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FIGURE 13. Noisy periodic modulations. Time series of wave height A(t )  for (a )  two waves crossing 
at the channel centreline, f = 1.00 and u2 = 2.28 x and (b) three waves separated by $ of a tank 
width, f =  1.02 and a2 = 2.53 x Power spectra for the two-wave ( c )  and three-wave (d) cases. 
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FIGURE 14. The mixed-mode state for modes N = 6 and 7. The up (down) triangles mark the neutral 
stability curve for mode N = 6 (N = 7). The crosses mark the transition to the mixed mode. The 
circles mark the transition to the chaotic state. The arrowhead on the line indicates the direction 
that a path must take in order for the mixed-mode state to be found. The points u-d correspond 
to figure 1 5 ( u 4 ) .  The non-dimensional frequency f and amplitude a are based on fs and k,, 
respectively. 
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FIQURE 15. The amplitudes for modes N = 6 and 7 as determined using the two-probe technique 
described in $2.2. The figures correspond to the points u 4  in figure 14 as forcing frequency f is 
increased a t  fixed forcing amplitude u2 = 1.23 x ( a )  The fixed point for mode N = 6. Mode 
N = 7 is nearly absent. (b)  A mixed-mode state with some mode N = 7.  (c) As in ( b )  but the 
contribution of mode N = 7 has increased. ( d )  The transition to a chaotic state. Kote that mode 
N = 6 is beginning to oscillate about a zero mean, characteristic of one type of sloshing (cf. figure 12). 
The non-dimensional time t and amplitude a are based on fs and k,, respectively. 
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4. Discussion 
Van Atta & Gharib (1987) document a case in which vibrations of a supposedly 

stationary cylinder rendered a study of fluid instability to one of solid-fluid 
interaction. This interaction produced artifactual regions of chaos that were not 
present in the fluid system alone. To guard against the possibility that, in our system, 
the observed bifurcation structure was a result of interaction with the wavemaker, 
the positions of the poles of the motion controller’s transfer function were moved, 
changing the response characteristics of the wavemaker. However, the frequency- 
locked tongues remained in the same regions in parameter space. Additionally, the 
feedback gain of the motion control system was reduced from its usual setting to a 
low value. Once again, the frequency-locked tongues still appeared in the same 
regions of parameter space. It was also observed, as would be expected, that  the 
width of the tongues was reduced due to  the stochastic variations of the forcing 
amplitude (Funakoshi & Inoue 1988). 

The location of the neutral stability curves (NS + / - ) and the transition curve to 
the one-mode oscillation show some discrepancies with investigations in other wave 
tanks (e.g. Shemer & Lichter 1987). This difference is probably due to  non-ideal 
effects, such as viscous dissipation, capillary hysteresis, and turbulence a t  the 
wavemaker (Kit & Shemer 1989) which are geometry dependent. 

The frequency-locked tongues from the sine map (figure 1) should be compared to 
the experimental tongues (figures 3 and 7). The width of the tongues increases with 
the non-linearity K or the forcing amplitude a2, and the winding number changes 
monotonically with frequency. Note that the observed tongues are locked to  rational 
winding numbers with small denominators. Also, many of the tongues correspond to 
Farey daughters of the adjacent tongues; for example, w(F,/F,) = $ is the Farey 
daughter of and $ and w(Fo/F2) = ?f is the Farey daughter of and y. The winding 
number w(FJF2) [w(F,/F,)] is graphed for a path through parameter space transverse 
to the tongue structure in figure 5 (figure 6). Note that the graph is a non-decreasing 
(non-increasing) function, with flat steps that can be identified with locked 
frequencies. This structure corresponds to the devil’s staircase-type behaviour 
discussed in $2. Presumably, a finer examination would reveal a greater number of 
steps corresponding to locked intervals. 

Inside the quasi-periodic tongues regions exist in which both winding numbers 
were rationally related and so all three frequencies were locked through weak 
coupling. It may be that the interaction of the three frequencies can be described by 
two weakly coupled circle maps (Coullet, Tresser & Arneodo 1980). However, these 
types of maps are still only partially understood (Linsay & Cumming 1989 ; Cumming 
& Linsay 1988). 

At low forcing amplitudes (outside the subharmonic tongues), bands of chaos fell 
between the two-frequency quasi-periodic tongues, as suggested by Linsay & 
Cumming (1989) and Cumming & Linsay (1988) for the Newhouse-RuelleTakens 
scenario (Newhouse et al. 1978). Within the subharmonic tongues, a typical 
transition from periodic to chaotic behaviour can be seen in figures 8 and 9. There has 
already been one Hopf bifurcation to the sloshing modulation in figures 8 ( b )  and 9 ( b ) ,  
and the sloshing period is locked to the subharmonic. The states shown in figures 
8 (c, d) and 9 (c, d) correspond to  a second Hopf bifurcation. Presumably, the motion 
was near a three-torus when the one-mode became unlocked from the subharmonic 
and broke down into the chaotic state of figures 8(e) and 9(e). 

By analogy to  the circle map, the frequency-locked tongues should, at a critical 
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FIQVRE 16. The quasi-periodic tongues shown in figures 3 and 7 do not reduce to a point as the 
forcing amplitude is decreased. One explanation is that the tongues are folded under the subcritical 
sloshing bifurcation as shown. 

forcing amplitude, shrink to zero width. This was, in fact, seen in the subharmonic 
tongues. However, the quasi-periodic tongues, which are not locked to the driver, 
characteristically were of finite width along the transition line tha.t delineates their 
initial appearance. This transition was hysteretic and can be interpreted as a 
subcritical bifurcation in which the tongues were tucked under (figure 16), onto the 
unstable branch (Anosov & Arnold 1988). The tips would then lie on the unstable 
branch, and only the truncated tongue would be observed. 

The present observations also caution against relying exclusively on perturbation 
equations, such as the non-linear Schrodinger equation (NLS), in which the 
subharmonic frequency is averaged out. One can use NLS to describe the one-mode 
and sloshing modulations, as they occur on a long timescale. However, the NLS does 
not contain the fast timescale needed to describe the locking to the driving 
frequency. 

Near the codimension two point, we found the stable mixed-mode state predicted 
by Ayanle et al. (1990). This state could only be reached by approaching it from the 
neighbourhood of the stable mode N = 6 fixed point. The stable mixed mode was 
composed of two modes (N = 6 ,7 )  with a fixed phase relation. As the mode numbers 
differ by one, the modes were in phase on one side of the tank and out of phase on 
the other. On the in-phase side of the tank, the wave height was large; on the out- 
of-phase side, the wave height was small. 

For sloshing to occur, the phase relation between the modes must change as a 
function of time (figure 12). This trajectory was taken in the w(F,/F,) = 13 
subharmonic tongue, near the tip for which the one-mode oscillation is absent. The 
even modes N were flipping between the two configurations cos (Ny)  and - cos (Ny)  
that satisfy the boundary conditions on the sidewall of the tank (here, assumed to be 
at  0 and 27c) as the odd modes oscillate about a non-zero mean. Before the one-mode 
oscillation appeared, the phase plane plot was approximately symmetric about a 
horizontal line. A small asymmetry was imposed by the odd number (13) of 
subharmonic cycles in one sloshing period. When the one-mode oscillation appeared, 
it broke the symmetry of the trajectory, yielding more complicated sloshing states. 
Typically, this symmetry breaking (figure 1 1 )  would lead to a pitchfork bifurcation 
(Guckenheimer & Holmes 1983). Note that the bifurcation is slightly imperfect ; this 
may be related to the slight asymmetry of the sloshing before the one-mode 
oscillation is present. After the bifurcation, the system is in a periodic state where all 
three frequencies are present and locked. 

Above the neutral stability curve NS + for f 5 1 .OO for mode 7, two transversely 
propagating waves appeared and created irregular motion. This situation appears to 
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be similar to the irregular motion of the bidirectional azimuthal waves in the 
cylindrical geometry of parametrically forced waves in the experiments of Funakoshi 
& Inoue (1988). 

A t  large cross-wave amplitudes, the noisy periodic states, consisting of two or more 
waves traversing the span of the tank, appeared. These waves became progressively 
more localized and appeared soliton-like as the forcing amplitude was increased. This 
may be related to the Benjamin-Feir instability of a uniform wavetrain and suggests 
that for an experimental apparatus capable of exciting high spanwise wavenumbers, 
solitons may dominate the dynamics. 
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